Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jovan Jovanovic,^a Markus Schürmann,^b Hans Preut^b* and Michael Spiteller^c

^aFaculty of Technology and Metallurgy, University of Belgrade, PO Box 3503, 11120 Belgrade, Yugoslavia, ^bFachbereich Chemie, Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany, and ^cInstitut für Umweltforschung, Universität Dortmund, Otto-Hahn-Str. 6, 44221 Dortmund, Germany

Correspondence e-mail: uch002@uxp1.hrz.uni-dortmund.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.036 wR factor = 0.076 Data-to-parameter ratio = 7.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The dihedral angle between the least-squares planes through the C atoms of the six-membered rings of the title indene dimer, $C_{18}H_{16}$, is 85.53 (11)°. The five-membered ring in the indene moiety is nearly planar [torsion angles: -0.4 (3), 0.1 (4), 0.3 (4), -0.6 (3) and 0.6 (3)°], whereas the other fivemembered ring deviates markedly from planarity [torsion angles: -15.3 (4), 14.3 (4), -7.8 (4), -1.5 (4), 10.7 (4)°]. The central C-C bond length is 1.488 (4) Å.

2-(2',3'-Dihydro-1'H-inden1'-yl)-1H-indene

Comment

The title compound, (I), represents the most stable dimer of indene obtained by the cationic dimerization through the reaction of the 2,3-dihydro-1*H*-inden-1-yl carbenium ion with 1*H*-indene at position 2. Compound (I) was described in the literature by Moglioni *et al.* (1998) and Noland *et al.* (1979), but a crystal structure has not been reported previously. It is the constituent of many pyrolysis oils and its characterization is important for environmental analysis. It also represents a useful model substance for MS and NMR analysis, and structural data are important for the understanding of some fine details of MS and NMR spectra.

Experimental

The general procedure was the one described by Dansi & Pasini (1951). 10 g of indene (>99.0% purity) and 40 ml 48% H_2SO_4 , as a two-phase mixture, were refluxed (oil-bath temperature 398–403 K) with vigorous stirring for 8 h. After cooling to room temperature, 100 ml cyclohexane were added. The reaction mixture was neutralized with NaHCO₃ (5%), washed with water and dried over Na₂SO₄. After evaporating the cyclohexane, 8.7 g of yellow viscous oil were obtained. It contained more than 85% of (I), which was isolated by crystallization from propan-2-ol.

Crystal data

$C_{18}H_{16}$	Mo $K\alpha$ radiation
$M_r = 232.31$	Cell parameters from 10913
Orthorhombic, Fdd2	reflections
a = 20.2837 (8) Å	$\theta = 3.5 - 25.3^{\circ}$
b = 42.098 (2) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 6.1644 (2) Å	T = 293 (1) K
V = 5263.8 (4) Å ³	Needle, colourless
Z = 16	$0.50 \times 0.05 \times 0.02 \text{ mm}$
$D_{\rm r} = 1.173 {\rm Mg} {\rm m}^{-3}$	

 \odot 2002 International Union of Crystallography Printed in Great Britain – all rights reserved Received 28 November 2001 Accepted 6 December 2001 Online 14 December 2001

Figure 1

View of the title compound (XP; Sheldrick, 1991) showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 30% probability levels. H atoms are drawn as circles of arbitrary radii.

Data collection

Nonius KappaCCD diffractometer	565 reflections with $I > 2\sigma(I)$
319 frames <i>via</i> ω -rotation ($\Delta \omega = 1^\circ$)	$R_{\rm int} = 0.041$
with 3 sets at different κ -angles	$\theta_{\rm max} = 25.3^{\circ}$
and two times 150 s per frame	$h = -23 \rightarrow 23$
Absorption correction: none	$k = -50 \rightarrow 50$
10913 measured reflections	$l = -7 \rightarrow 7$
1285 independent reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.076$ S = 0.821285 reflections 163 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0275P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.10 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.10 \text{ e } \text{Å}^{-3}$ H atoms were placed in calculated positions with $U_{\rm iso}$ constrained to be 1.2 times $U_{\rm eq}$ of the carrier atom. Friedel opposites were merged and no attempt was made to refine the absolute configuration.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1991); software used to prepare material for publication: *SHELXL97*, *PARST*95 (Nardelli, 1995) and *PLATON* (Spek, 2001).

We thank the Alexander von Humboldt Foundation, Bonn, Germany, for supporting this work through a fellowship to JJ.

References

- Dansi, A. & Pasini, C. (1951). Gazz. Chim. Ital. 81, 507-510.
- Moglioni, A. G., Tombari, D. G. & Yglesias, G. Y. M. (1998). J. Chem. Soc. Perkin Trans 1, pp. 3459–3462.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Noland, W. E., Landucci, L. L. & Darling, J. C. (1979). J. Org. Chem. 44, 1358– 1359.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter and R. M. Sweet, pp. 307–326. London: Academic Press.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1 Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.